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Abstract

Clusters of workstations and networked parallel com-
puting systems are emerging as promising computational
platforms for HPC applications. The processors in such
systems are typically interconnected by a collection of het-
erogeneous networks such as Ethernet, ATM, and FDDI,
among others. In this paper, we develop techniques to per-
formblock-cyclic redistributionoverP processors intercon-
nected by such a collection of heterogeneous networks.
We represent the communication scheduling problem us-

ing a timing diagram formalism. Here, each interprocessor
communication event is represented by a rectangle whose
height denotes the time to perform this event over the het-
erogeneous network. The communication scheduling prob-
lem is then one of appropriately positioning the rectangles
so as to minimize the completion time of all the communi-
cation events. For the important case where the block size
changes by a factor ofK, we develop a heuristic algorithm
whose completion time is atmost twice the optimal. The run-
ning time of the heuristic is O�PK ��.
Our heuristic algorithm is adaptive to variations in net-

work performance, andderives schedules at run-time, based
on current information about available network bandwidth.
Our experimental results show that our schedules always
have communication times that are very close to optimal.
Keywords: Workstation clusters, heterogeneous networks,
communication scheduling, block-cyclic redistribution.

1. Introduction

Due to advances in high-speed networks, workstation
clusters and loosely connected distributedsystems are being
used as platforms for High Performance Computing. Wide
area networking technology has also enabled the develop-
ment of metacomputers [11], wherein grand challenge ap-
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plications are parallelized across geographically distributed
supercomputers and visualization devices. Such distributed
systems are typically interconnected with a collection of
many different kinds of communication networks, such as
ATM, HiPPI, and Ethernet.
Prototype systems with such heterogeneous networks

have been built. For example, [6] evaluated the performance
of HPC applications on a cluster of workstations intercon-
nected with ATM and FDDI networks. The I-WAY (Infor-
mation Wide Area Year) metacomputer at SC ’95 consisted
of over 10 networks of varying bandwidths, protocols, and
routing technology. The HiPer-D project investigates the
use of networked distributed computing capabilities in bat-
tle management systems on U.S. Navy cruisers. The Battle-
field Awareness and Data Dissemination (BADD) program
develops techniques for delivering multimedia data to mo-
bile troops over a combination of wired and wireless net-
works [12].
From the above examples, it is clear that heterogeneity

is a salient characteristic of the interconnection network in
most distributed computational environments. Further, the
network is shared among multiple applications. The perfor-
mance therefore depends upon the current traffic conditions,
and typically varies over time.
For scalable performance on such a platform, support

for fast application-level communication is necessary. Ef-
ficient implementations of important collective communi-
cation kernels must be incorporated into communication li-
braries. In this paper, we develop communication tech-
niques for block-cyclic redistribution over such heteroge-
neous networks. We consider the important case where the
block size changes by a factor ofK. Our techniques can also
be extended to other redistribution problems.
The block-cyclic distribution is widely used in many

HPC applications to partition an array over multiple pro-
cessors. For example, in signal processing applications,
the block-cyclic distribution is the natural choice for radar
and sonar data cubes. Many of the frequently occurring
communication patterns, such as the corner turn operation,
can be then viewed as block-cyclic redistribution opera-



tions. ScaLAPACK, a widely used mathematical software
for dense linear algebra computations, also uses a block-
cyclic distribution for good load balance and computational
efficiency. Matrix transpose operations, which often oc-
cur in linear algebra computations, are a special case of
the block-cyclic redistribution. HPF provides directives for
specifying block-cyclic distributionand redistribution of ar-
rays.
The problem of block-cyclic redistribution in a tightly-

coupled homogeneous parallel system has been well re-
searched. However, the heterogeneity and sharing of the
network make it necessary to develop new communication
scheduling techniques. In Section 4, we present a communi-
cation scheduling algorithm that is well suited for heteroge-
neous networks. The algorithm is adaptive to variations in
network performance. The schedule is derived at run-time,
based on current information about network load.
Our scheduling approach is based on a communication

model that represents the communication performance be-
tween every processor pair using two parameters: a start-up
time and a data transmission rate. We formalize the commu-
nication scheduling problem using a timing diagram repre-
sentation. Each interprocessor communication event is rep-
resented as a rectangle whose height equals the time to per-
form the communication over the heterogeneous network.
The height is calculated using our communication model.
The communication scheduling problem is then one of ap-
propriately positioning the rectangles in the timing diagram
so as tominimize the completion time of all the communica-
tion events. Our heuristic algorithm derives a communica-
tion schedule whose completion time is always within twice
the optimal. The running time of the heuristic is O�PK��,
where P is the number of processors, andK is the factor by
which the block size changes.
The rest of the paper is organized as follows. Section 2

discusses the characteristics of the block-cyclic redistribu-
tion communication pattern. Section 3 discusses some pre-
vious research efforts on block cyclic redistribution. Sec-
tion 4 introduces our communication model for the hetero-
geneous network and presents our heuristic algorithm for
block-cyclic redistribution. Section 5 presents performance
results from the experimental implementation of our algo-
rithm. Section 6 concludes the paper and discusses future
research directions.

2. The Block-Cyclic Redistribution Problem

The block-cyclic distribution of an array can be defined
as follows [14]: given P processors, an array with N ele-
ments, and a block size x, the distributionfirst partitions the
array elements into contiguous blocks of x items each. bi is
the ith block, � � i � N

x
�. The blocks are then assigned to

�For simplicity, we assume that x dividesN .
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Figure 1. Redistribution from cyclic(�) to
cyclic(�) on 4 processors.

processors in a round robin fashion so that bi is assigned to
processor (imodP ). We denote a block-cyclic distribution
of block size x as cyclic(x).
The block-cyclic data redistribution problem consists of

reorganizing an array from one block-cyclic distribution to
another. The most frequently encountered version of this re-
distribution problem is the cyclic(x) to cyclic(Kx) redistri-
bution, which is the problem we consider in this paper. We
denote the cyclic(x) to cyclic(Kx) redistribution among P
processors as �x�K�P �.
Figure 1 shows the example of ����� ��. The array A

which hasN � �� elements is shown in Figure 1(a). Figure
1(b) shows the initial distribution, cyclic(�). Here, bi is of
size 2 elements, and has a global block index i. The blocks
are assigned to P �� �� processors in a round robin fash-
ion. If the block size is increased by a factor of K�� ��,
i.e., the new block size becomes 6, each set of three consec-
utive blocks becomes a new block, as shown in Figure 1(c)
and (d).
Block-cyclic redistributionconsists of three main phases:

1. Index set computation and message generation:
Each processor computes indices of array elements that
are to be communicated with the other processors, as
well as the destination processors of such array ele-
ments. The elements are then packed into message
buffers, one for each destination processor.

2. Communication scheduling: A given processor con-
tainsmessages for a total ofK processors, andwill also
receive messages fromK processors. The aim of com-
munication scheduling is to reduce the overall commu-
nication time. During this phase, each processor deter-
mines an ordering among its send and receive events,



  (a)

p0 p1 p2 p3

K=3

p0 p1 p2 p3

(b)

p0 p1 p2 p3

Figure 2. (a) Communication pattern for
�x��� �� (b) Contention-free schedule for a ho-
mogeneous network.

so as to reduce contention.

3. Interprocessor communication: The processors send
and receive messages in the order specified by the
communication schedule. This phase incurs software
start-up overheads for invocation of the send and re-
ceive system calls, and transmission costs for sending
data over the interconnection network. In the absence
of communication scheduling, this phase can become
very inefficient due to node contention.

The interprocessor communication pattern of �x�K�P �
can be represented by a communication graph, shown inFig-
ure 2(a). Each edge represents a message that is to be sent
between the corresponding processors. Note that each pro-
cessorPi� � � i � P must sendmessages toK destinations,
and receive messages from K sources. For given values of
x�K� and P , the position of edges in this graph and the ar-
ray indices corresponding to each edge are computed during
the index computation phase. In [7], we have developed ef-
ficient techniques for index computation, for systems with
homogeneous networks.
Figure 2(b) shows an example of a K-step communica-

tion schedule for�x��� ��. Here, the communication pattern
of Figure 2(a) is broken down into a series of contention-
free communication steps. Node contention occurs when
multiple processors simultaneously send messages to a re-
ceiver. When the network is homogeneous, all the commu-
nication events within any step of Figure 2(b) would take
the same amount of time. In [7], we have developed com-
munication scheduling techniques for such a homogeneous
scenario. However, when the network links are heteroge-
neous, the time taken for each message varies with the avail-
able network bandwidth between the corresponding proces-

sors. Due to this non-uniformity inmessage communication
times, node contention and idle cycles would be introduced
in the schedule of Figure 2(b) if it was used without mod-
ification. It is therefore necessary to develop new commu-
nication scheduling techniques for cyclic redistributionover
heterogeneous networks. Section 4 presents our new algo-
rithms for this problem.

3. RelatedWork

The block-cyclic redistribution problem has been the fo-
cus of several research efforts. Techniques have been de-
veloped for both the index computation phase and the com-
munication scheduling phase over a homogeneous network.
In [13], Choudhary et. al. present efficient index computa-
tion algorithms for �x�K�P �, when P modK � �. They
also consider the redistribution from cyclic(x) to cyclic(y),
for general x and y, using gcd and lcm methods.
In [9], Banerjee et. al. represent a cyclic(x) distribution

as a set of strided line segments. Using this formalism, the
array elements to be exchanged between a pair of processors
is computed by the intersection of the respective line seg-
ments.
Sadayappan et. al. [5] and Walker et. al. [14] have

developed algorithms for the communication scheduling
phase. Here, a K step schedule is given for �x�K�P �.
At each step, processors exchange data in a contention-free
manner: each processor sends data to exactly one processor
and receives data from exactly one processor.
In [7], we introduced a uniform framework to develop

redistribution algorithms for �x�K�P �. Based on this
framework, efficient algorithms were developed for reduc-
ing both the index computation and communication over-
heads. Three classes of techniques were presented for
�x�K�P �: direct, indirect, and hybrid. In the direct ap-
proach, a block is sent directly from a source processor to
its destinationwithoutbeing sent to intermediate processors.
The direct approach performs the�x�K�P � communication
inK communication steps. The indirect approach performs
�x�K�P � in atmost dlog

�
Ke	� steps. Here, the array ele-

ments are communicated in a “combine and forward” man-
ner. The hybrid approach is a combination of the direct and
indirect approaches.
In [2], communication schedules are developed for the

general redistribution problem of cyclic(r) over a set of P
processors, to cyclic(s), over a different set of Q proces-
sors. Graph matching algorithms are used to develop com-
munication schedules in this work. These techniques have
two important drawbacks: (i) The communication schedul-
ing phase is expensive, due to the use of graph matching al-
gorithms, and (ii) All processors are synchronized after each
step in the interprocessor communication phase. This in-
creases the interprocessor communication time.



[8] considers the problem of run-time redistribution from
cyclic(x) on P processors to cyclic(Kx) on Q processors,
over a homogeneous network. The algorithm is based on
a generalized circulant matrix formalism. The generated
schedule minimizes the number of communication steps
and eliminates node contention in each communication step.
The network bandwidth is fully utilized by ensuring that
equal-sized messages are transferred in each communica-
tion step.

Performance studies of heterogeneous networks were re-
ported in [6]. Experiments were performed on a local clus-
ter of workstations, interconnectedwithATM, Ethernet, and
Fibre-Channel networks. The performance characteristics
of each of the networkswere first evaluated by sendingmes-
sages of various sizes over the particular network. These
characteristics were used to choose a suitable technique for
communication over the heterogeneous network. The Per-
formance Based Path Selection (PBPS) technique selects
one of the networks to be used for a communication event,
depending on the size of the message. The Aggregation
technique uses multiplenetworks at the same time, bybreak-
ing up the message into multiple parts and sending these
parts over different networks. However, this research only
considered point-to-point communication between a pair of
nodes in the system. In comparison, our paper investigates
the collective communication pattern of block-cyclic redis-
tribution.

The Management System for Heterogeneous Networks
(MSHN) project at Naval Postgraduate School, USC, and
Purdue University is designing and implementing a Re-
source Management System (RMS) for distributed hetero-
geneous and shared environments. MSHN assumes hetero-
geneity in resources, processes, and QoS requirements. The
goal is to schedule processor and network resources among
individual applications so that their QoS requirements are
satisfied. In this context, data staging techniques for dis-
tributed systems with heterogeneous networks have been
considered [12].

4. Our Communication Scheduling Approach

As discussed in Section 2, block-cylic redistributioncon-
sists of index computation, communication scheduling, and
interprocessor communication. Since the index computa-
tion phase is independent of the network characteristics,
techniques developed for homogeneous networks [7] can
be used. In this section, we consider the communication
scheduling phase. We first discuss the assumptions and
communication model that we shall use to analyze our com-
munication schedule. Section 4.3 presents our communica-
tion scheduling algorithm.

4.1. Communication Model

The overall network in theP processor system consists of
several heterogeneous network components. Each compo-
nent interconnects a subset of the processors. We can model
such a network as a completely connected virtual network
with heterogeneous performance between each pair of pro-
cessors. Thus, the path between any pair of processors can
be modeled as a single link, with the effective performance
of the heterogeneous path. Techniques to aggregate the per-
formance of different networks into a single virtual network
have been considered, and are an active area of research [6].
We model the communication performance of the path be-
tween a pair of processors Pi and Pj by a start-up cost Ti�j
and a data transmission rate Bi�j. Thus, to send a m byte
message between Pi and Pj, the time taken is Ti�j 	 m

Bi�j
.

When the message sizes are large, the data transmission cost
is the dominating component, and the start-up cost can be ig-
nored �. Typical values for the start-up cost could be in the
range of 10 to 50 � s, while typical values for the bandwidth
could be in the range of a few Mb/s to hundreds of Mb/s.
We assume that the effective network performance be-

tween any pair of processors will not change during the com-
munication phase. This can be ensured if the application re-
serves network bandwidth for the duration of the communi-
cation. [3] and [15] discuss issues relating to reserving net-
work resources.
We assume that a node is allowed to simultaneously par-

ticipate in atmost one send and one receive operation. When
a node has multiplemessages to send, it performs these send
operations one after another. Current hardware and soft-
ware do not easily enable multiple distinct messages to be
transmitted simultaneously. If multiple nodes simultane-
ously send to any node Pj, these messages are received one
after the other at Pj. We say that node contention occurs at
Pj. The validity of this assumption can be seen by examin-
ing the events involved in a message transmission from Pi
to Pj. A control message is first transmitted by Pi. The ac-
tual data is sent only after this control message is acknowl-
edged byPj. IfPj is busy receiving from a different node, it
sends the acknowledgement to Pi only after completing the
previous receive operation. We do not consider the use of
wild-card non-blocking receives. Although this can allow
a processor to simultaneously wait for many receives, large
buffer space overheads are incurred.

4.2. Timing Diagrams

Communication schedules can be conveniently repre-
sented by timing diagrams. An example of a timingdiagram
for �x��� �� is shown in Figure 3. A timing diagram con-
sists ofP columns, one per processor. The vertical axis rep-

�We make this approximation in our experiments.
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Figure 3. A communication schedule for
�x��� ��.

resents time. The communication events in column i rep-
resent the messages sent from processor Pi. The rectangle
labeled j in column i represents the message sent from Pi
to Pj �. The height of the rectangle denotes the time for the
communication event. The width of the rectangle does not
have any significance. Once the message sizes and Ti and
Bi parameters for all processors are known, the heights of all
the rectangles can be determined. Thus, the timing diagram
inherently absorbs the heterogeneity in network parameters
and message lengths.
Any communication scheduling algorithm must deter-

mine the positions of the communication events so that an
efficient schedule is found. The goal is to find the schedule
that has theminimum completion time, i.e., the time at which
the last communication event is completed. Since a node
cannot send multiplemessages simultaneously, no overlap is
allowed among any of the rectangles in a column. Similarly,
since multiple simultaneous receive events are not permitted
at a processor, all the rectangles with the same label j must
have mutually disjoint time intervals. Thus, the completion
time of the schedule cannot be less than the summation of
send times or receive times at any processor, whichever is
larger. This quantity is therefore a lower bound on the com-
pletion time of any schedule.

4.3. Our Scheduling Algorithm

During the index computation and communication
scheduling phases, each processor independently computes
the entire schedule. The communication matrix C, which
represents the time for each point-to-point communication
event, is computed based on the values of P ,K, N , and the

�A receive schedule can be similarly constructed, where the communi-
cation events in column i represent messages received by processorP i .

network performance parameters. C
i� j� is the height of the
rectangle labeled i in column j of the timing diagram.
It can be shown that the problem of finding the optimal

communication schedule is NP-complete. We have there-
fore developed a heuristic algorithm for this problem. Each
processor is considered as two independent entities, a sender
and a receiver. The followingdata structures are maintained
by the algorithm:

� For each sender i� � � i � P , a set Ri of receivers
is maintained. These are the receivers to which i must
send a message sometime during the schedule. For the
�x�K�P � communication pattern, each setRi will ini-
tially consist of K elements. The Ri’s are obtained
from the communication matrix in a straightforward
way. These are the row indices of the non-zero ele-
ments in column i ofC.

� The P -element arrays sendavail and recvavail contain
information about the availability of the corresponding
senders and receivers. For example, the ith element of
sendavail specifies the earliest time at which sender i
can participate in future send operations. All elements
of both these arrays are initialized to 0.

The algorithm proceeds as follows:

� Whenever a sender i becomes available at time sen-
davail[i], its receiver set Ri is scanned, and the ear-
liest available receiver j is selected. The communi-
cation event from i to j is scheduled to begin at time
t=max(sendavail[i], recvavail[j]). sendavail[i] and
recvavail[j] are assigned the value t	C
j� i�, since the
sender i and receiver j will be busy until this time. Fur-
ther, j is deleted from Ri.

� If multiple senders become available at the same time
(for example, at time 0), they are processed in an arbi-
trary order. However, all senders that become available
at time t are processed before any senders that become
available at a later time. The algorithmmaintains a list
of senders in increasing order of their time of availabil-
ity.

� Whenever a sender is finished with all its operations, it
is deleted from this list. The algorithmterminates when
all the senders are thus deleted.

Observe that the algorithm is a greedy one. At any time a
sender is free, the heuristic assigns a communication event
to one of the elements in its receiver set. Idle cycles are
inserted in a sender’s schedule only if none of its potential
receivers are available. Our algorithm is also adaptive to
changes in network performance. The derived communica-
tion schedule depends on the entries ofC, which are in turn



dependent on network load conditions. The schedule can be
derived at runtime, using current values of network perfor-
mance parameters. Previous redistribution algorithms for
homogeneous networks do not provide such adaptivity. A
“fixed” communication schedule is used irrespective of net-
work load and bandwidth.

The total number of communication events to be sched-
uled is PK. The scheduling of each event takes O�K�
time, since the elements of the corresponding receiver set
must be scanned. Our scheduling algorithm therefore runs
inO�PK�� time. On a single node of the Cray T3E, our al-
gorithm executed in about 10 ms for P � �� and K � ��.
This is the cost of the communication scheduling phase.

Based on the schedule, the processors perform send and
receive operations during the interprocessor communication
phase. Initially, a single non-blocking receive and a non-
blocking send is posted by each processor. If the receive fin-
ishes first, the next receive operation is immediately posted.
If the send finishes first, the next send operation is initiated.
This continues until all the communication events have been
completed. The cost of the interprocessor communication
phase depends upon the completion time of the schedule.

Lemma: The heuristic algorithm is guaranteed to find a
communication schedule whose completion time is within
twice the optimal.

Proof: Assume, without loss of generality, that the last
sender to finish all its transmissions is i. Let j be its last re-
ceiver in the schedule, i.e., j is the receiver that i sends its
last message to. It can be deduced that during the idle cy-
cles in sender i’s schedule, receiver j must have been always
busy. If this were not the case, the greedy algorithm would
have scheduled the communication event from i to j at this
time. Thus, we can conclude that the sum of the idle cycles
in sender i’s schedule is bounded by the total communica-
tion time for events incident at receiver j, i.e., the sum of
elements in row j of C. The completion time is the sum of
idle cycles in sender i and the total time for send events from
sender i, i.e., the sum of elements in column i ofC. Thus, the
completion time is at most the sum of a row and a column in
the communication matrixC, and is hence within twice the
lower bound. �

Our communication problem has some similarities to the
open shop scheduling problem [4]. Here, a set of M ma-
chines execute a set of N jobs. Each job Ji has a task to
be executed on every machine Mj, the execution time for
which is given by ti�j. The tasks may be executed in any
order. However, atmost one machine may process a given
job at any time. Also, atmost one job may be processed by a
given machine at any time. The goal is to schedule the tasks
on themachines tominimize the completion time. The prob-
lem is known to be NP-complete, and an algorithm similar
to the above greedy heuristic has been used [10].

5. Experimental Results

In this section, we evaluate the performance of our
heuristic scheduling technique by measuring the time for the
interprocessor communication phase. We compare this with
the time for the interprocessor communication phase of the
direct communication schedule, which is a fixed communi-
cation schedule. For �x�K�P �, this schedule breaks down
the communication pattern intoK contention-free steps. It
has been shown to be effective in systems with homoge-
neous networks, when each communication event takes the
same amount of time. It can be derived from the formalisms
of [5], [7], and [14].
We have developed a simulator that accepts as input the

network performance parameters, and the parameters of the
cyclic redistribution problem. The simulator then derives
the communication schedule, and calculates the expected
completion time. We also implement the communication
schedules on a Cray T3E, and measure the time taken to per-
form the redistribution. Our experimental methodology is
summarized in the following key steps:

1. For an input value of P , our simulator first generates
performance parameters for the heterogeneous net-
work. The simulator accepts as input the minimum and
maximum bandwidth values, and randomly generates
bandwidth values in this range for every processor pair.

2. For given input values ofK andN , the communication
matrix C is then generated. The lower bound on any
communication schedule is calculated as the maximum
sum over all the rows and columns ofC�

3. Our heuristic scheduling algorithm described in the
previous section is then executed, and the sender and
receiver schedules at each processor are computed.
The simulator also computes the estimated completion
time of the schedule.

4. We implement the schedule generated in Step 3, on a
Cray T3E. Although the network of the Cray T3E is
homogeneous, we can simulate the heterogeneous net-
work of Step 1 by scaling the sizes of the messages ap-
propriately. Thus, if the heterogeneous network has a
bandwidth of B� between nodes i and j, and if B� is
the node-to-node bandwidth of the Cray T3E, then we
scale the message size between node i and j by a fac-
tor B�

B�

. Each point-to-point event in the communica-
tion schedule is implemented by using MPI send and
receive calls.

5. We also implement the direct schedule on the Cray
T3E. The communication performance of our heuris-
tic schedule is compared with that of the direct sched-
ule, for various values of P and K. The communica-
tion times are measured and tabulated.
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Figure 4. Interprocessor communication times of our heuristic schedule and the direct schedule on
16 and 64 processors of the Cray T3E.

Figure 4 compares the interprocessor communication
time of our heuristic schedule and the direct schedule. These
times were measured by our experimental implementations
of both schedules on the Cray T3E. The simulated hetero-
geneous network had node-to-node bandwidths in the range
of 10 MB/s to 200MB/s. The Cray T3E has a bandwidth of
150MB/s, which is the value we use forB� in Step 4 above.
In Figure 4, results for 16 and 64 processors are shown. K
is varied from a small number to P � �. Experimental re-
sults for other values of P can be found in [1]. From Fig-
ure 4, we can conclude that our heuristic schedule achieves
significant and consistent performance improvements over
the direct schedule. The communication time of the heuris-
tic schedule is lower than that of the direct schedule by 10%
to 60%.
We observe that, for a fixed value of P , the communica-

tion time for both the schedules varies considerablywith the
value ofK. This phenomenon is not observed in [7], where
the direct schedule is implemented on a homogeneous net-
work. The variation occurs due to the heterogeneity in the
network. The communication matrix for�x�K�P � has PK
non-zero entries, while other entries are zeroes. For differ-
ent values of K, messages are exchanged between a differ-
ent subset of the total P � processor pairs.
Figure 5(a) shows the estimated completion times for the

heuristic and direct schedules, as calculated by the simula-
tor. The lower bound on the completion time is also shown
in these figures. It can be seen that the completion time of
our heuristic algorithm is alwayswithin2 - 10%of the lower
bound.
An important characteristic of our heuristic algorithm is

that the schedule is adaptive to variations in network per-
formance. In a metacomputing system, applications can
query a directory service for current values of network per-
formance. Our heuristic can use such information during the
communication scheduling phase. In contrast, the direct al-
gorithm uses a fixed communication pattern, irrespective of
the network performance. Figure 5(b) shows the simulated
communication time of both schedules as the heterogeneity
in the network is varied. Here, P � ��, K � ��, and N �
��������. The variation in network bandwidth is increased
from 100 to 1900%. When the variation is 100 %, the net-
work bandwidth varies in the range 10 MB/s to 20 MB/s.
When the variation is 1900%, the network bandwidth varies
in the range of 10 MB/s to 200 MB/s. The completion time
of our heuristic algorithm is always very close to the lower
bound, for all values of network heterogeneity.

6. Conclusion

In this paper, we have developed an effective commu-
nication scheduling technique for the important problem of
block-cyclic redistribution over a heterogeneous network.
Our techniques target an emerging class of computational
platforms, namely workstation clusters and distributed sys-
tems. The interconnection network in such systems is typ-
ically heterogeneous and shared. Our adaptive algorithms
derive communication schedules using run-time informa-
tion on network performance and heterogeneity.
Our scheduling techniques can lead to significant im-

provements in application performance. Our experimen-
tal results show reductions of upto 60 % in communication
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Figure 5. Simulation results: lower bound, heuristic schedule, and direct algorithm. (a)P=64 proces-
sors, K=9 to 63 (b) P=64, K=40, network heterogeneity varies from 100% to 1900%.

time, compared with widely used algorithms for homoge-
neous systems.
In our future research efforts, we shall study the perfor-

mance of our algorithmusing a real heterogeneous network.
We are also developing techniques to reduce the cost of the
communication scheduling phase, by using enhanced data
structures. Our communication scheduling technique can be
easily extended to other important redistribution problems,
such as block-cyclic redistribution of multi-dimensional ar-
rays, and redistribution from cyclic(x) to cyclic(y).
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